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Abstract. The gravitational spreading of a liquid with temperature-dependent viscosity is investigated. The aspect
ratio of the layer of fluid is taken to be small, thus allowing significant simplifications to the equations governing
the thermal and flow problems. The resulting equations are coupled through a dependency of the viscosity on
temperature, three specific forms of which are considered. When the coupling is sufficiently strong, the flow is
markedly different from the isothermal case and physically significant features seen in practice, such as a central
plateau in the spreading profile, result.
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1. Introduction

There is an extensive literature on the spreading of an isothermal liquid over a smooth solid
surface. Less attention has been paid, however, to non-isothermal flows, important examples
of which are lava flow and the spreading of nuclear material. Non-isothermal flows are the
subject of the current paper, which extends and expands on the analysis summarised in [1,
Section 5.1], [2]; further details also being given in the thesis of Sansom [3].

The spreading flows in this paper are assumed to be laminar, to be governed by a gravity-
viscous balance (intermolecular and capillary forces, in particular, being neglected), and to
have a small aspect ratio. The use of thin-layer or ‘lubrication’ equations to determine the
evolutinn equation governing a free surface appears to have been first made by Mei [4],
who considered isothermal, laminar flow down an incline. The analysis was simplified by
[5], who derived similarity solutions for the flow of a fluid over a horizontal substrate; these
similarity solutions were previously obtained by Barenblatt [6] in a different context. Huppert
[7] extended the work [5] by considering gravity currents from line and point sources. Hocking
[8] discussed the relative importance of gravity and capillarity for spreading thin films. Non-
Newtonian models have also been applied to isothermal spreading. For example, a Bingham
plastic model of mud, with a high concentration of cohesive clay, flowing down an incline is
discussed by Liu and Mei [9]. Similarly, Huang and Garcia [10] discuss a Herschel-Bulkley
model for flow down a slope. This viscoplastic model is also applied to the spreading of lava
domes with a small aspect ratio in Balmforth et al. [11]. Viscoplastic material, modelled as a
biviscosity fluid with a yield stress, was also considered by Ross et al. [12] in their study of
thin-film flow around a large horizontal cylinder.

Concerning relevant non-isothermal work, we note the spreading over a horizontal sub-
strate of a liquid subject to capillary, thermocapillary and gravitational forces was investigated
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theoretically by Ehrhard and Davis [13] and experimentally by Ehrhard [14]. The theoretical
work, which assumes constant viscosity and a temperature-dependent surface tension, shows
good agreement with observations from experiments on the spreading of silicone and paraffin
oil drops over a glass plate. A model more immediately related to the gravity-dominated
regime that forms the focus of this paper is that of Sakimoto and Zuber [15] who used a
viscosity with a power law dependence on time in an attempt to describe the plateau features
observed in Venusian ‘pancake’ domes. In fact, models with viscosities that vary with time
only can be shown to correspond simply to a redefinition of time in the constant viscosity
model (cf. Section 4 below) and thus to possess similar qualitative features. Such models
cannot therefore be expected to possess solutions exhibiting more noticeable plateaux than
those arising in the isothermal case. Bercovici [16] uses a Pohlhausen-type approach to treat
the equations governing the flow of a cooling viscous-gravity current with a more general
temperature-dependent viscosity. The computed flows from a point source develop profiles
that have a steep flow front and a central plateau. Thus there is qualitative agreement with
results from experiments performed by Stasiuk et al. [17], who study the case of initially
warm glucose syrup continuously extruded from a point source onto a horizontal substrate
of a tank filled with a cold aqueous solution. Other related literature is cited by Balmforth
and Craster [18] in their study of spreading viscoplastic material with temperature-dependent
viscosity, by Oron et al. [19] in their review of thin liquid films, and by Wilson and Duffy
[20,21] in their studies of thin rivulet flow under gravity.

In this paper we consider the low reduced Peclet number regime of non-isothermal spread-
ing (other regimes are summarised in King et al. [1]) in which the non-uniform temperature
profile results either from the substrate being held at a temperature which differs from that
of the ambient, or from internal heating. Thus, although the current study is intended to be
generic (rather than having particular applications in mind), it is of more relevance to the
spreading of nuclear materials (and experiments simulating such flows) than to lava flow for
which the reduced Peclet numbers are generally large. We derive the governing equations for
non-isothermal spreading in Section 2. The resulting temperature models are split into two
different cases: first, in Section 4, we consider the case with no heat source but either a hot or
a cold substrate; secondly, in Section 5, we consider the effect of an internal heat source on
liquid spreading on a substrate held at the ambient temperature. The flow and thermal fields
are coupled through the viscosity which is, in practice, often the material property that varies
most significantly with temperature; we concentrate on three specific viscosity laws.

2. Derivation of the governing equations

2.1. FLOW EQUATIONS

Consider a non-isothermal Newtonian liquid of temperature T (x, y, z, t) and viscosity µ(T )

spreading under gravity over a smooth horizontal rigid plane at z = 0. The surrounding gas
has temperature Ta and the temperature of the substrate is Tb. The liquid is of constant density,
ρ, and is surrounded by a gas whose viscosity is negligible compared to that of the liquid. The
velocity q = (u, v,w) in Cartesian co-ordinates, pressure p (relative to atmospheric) and T

are governed by the Navier-Stokes (in a vector form that may be somewhat unfamiliar), the
continuity and the energy equations:
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ρ

(
∂q

∂t
+ (q.∇)q

)
= −∇p + ∇. (µ∇q) + dµ

dT
(∇(q.∇T ) − (q.∇)∇T ) + ρg, (1)

∇.q = 0, (2)

ρcp

(
∂T

∂t
+ (q.∇)T

)
= ∇.(k∇T ) + Q, (3)

where positive Q represents a heat source, k is the thermal conductivity and cp is the specific
heat, with all being assumed constant in this particular study. Here viscous dissipation is
neglected as its effect is insignificant in the solutions with which we are primarily concerned.

We define the aspect ratio of the flow as ε = h0/ l0, where h0 and l0 are typical length scales
in the vertical and horizontal directions, respectively. We take µ0 and U0 to be characteristic
viscosity and horizontal velocity scales and the equations are non-dimensionsionalised by
introducing:

x = l0x
∗, y = l0y

∗, z = h0z
∗, u = U0u

∗,

v = U0v
∗, w = εU0w

∗, µ = µ0µ
∗, T ∗ = T −T1

�T
,

Q = k�T

h2
0

Q∗, t = l0
U0

t∗, and p = U0µ0l0
h2

0
p∗.

(4)

The temperature is thus measured relative to T1 in units of �T , where T1 and �T are defined
later. The above scales give rise to a Reynolds number, Re = ρU0l0/µ0 and a Peclet number,
Pe = ρcpU0l0/k; we take U0 = ρh3

0g/µ0l0 to attain a balance in the vertical momentum
equation. In the limit ε → 0 with the reduced Reynolds and Peclet numbers, ε2Re and ε2Pe,
also tending to zero, the dominant (‘lubrication’) balance becomes:

−∂p

∂x
+ ∂

∂z

(
µ

∂u

∂z

)
= 0, −∂p

∂y
+ ∂

∂z

(
µ

∂v

∂z

)
= 0, (5)

∂p

∂z
= −1, (6)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (7)

and

∂2T

∂z2
= −Q, (8)

where the stars have been dropped for clarity.
The leading-order boundary conditions for the liquid are:

at z = 0 u = v = w = 0,

at z = h(x, y, t)
∂F

∂t
+ (q · ∇)F = 0, µ

∂u

∂z
= 0, µ

∂v

∂z
= 0, p = 0,

(9)
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where F = z − h(x, y, t), with F = 0 denoting the free surface. The evolution equation
governing the free surface follows from the manipulation of (5–7) and (9), whereby p = h−z,
the resulting horizontal velocity components are

u = −
∫ z

0

(h − z
′
)

µ
dz

′ ∂h

∂x
, v = −

∫ z

0

(h − z
′
)

µ
dz

′ ∂h

∂y
, (10)

where in such integrals µ denotes µ(T (x, y, z
′
, t)), and the vertical velocity is given by

w = ∇ ·
(∫ z

0

(h − z
′
)(z − z

′
)

µ
dz

′∇h

)
, (11)

where ∇ = (∂/∂x, ∂/∂y). The resulting evolution equation is thus

∂h

∂t
= ∇ · (D∇h) , (12)

where the effective ‘diffusivity’ D is given by the non-local expression

D(h;T ) =
∫ h

0

(h − z
′
)2

µ(T )
dz

′ ; (13)

in the isothermal case this simplifies to

D = 1

3
h3, (14)

cf. [5]. With regard to (13), it is instructive to rewrite the temperature in the form

T = T (x, y, ζ, t), ζ = z/h(x, y, t); (15)

one then has

D(h;T ) = h3
∫ 1

0

(1 − ζ
′
)2

µ(T (x, y, ζ
′
, t))

dζ
′
. (16)

Whenever T = T (z, h), (12–13) takes the form of a nonlinear diffusion equation for the
droplet profile h. We consider below a number of simple boundary-value problems for T

which lead to this type of dependence; others are readily envisaged, some generalisations
being noted in [2].

Henceforth we shall study only (1+1)-dimensional versions of (12), namely

∂h

∂t
= 1

rN−1

∂

∂r

(
rN−1D(h;T )

∂h

∂r

)
, (17)

with N = 1, r = x for two-dimensional flows and N = 2, r = (x2 + y2)
1
2 for cylindrically

symmetrical ones.

2.2. TEMPERATURE PROFILE

The ‘diffusivity’ (13), (16) has a non-local dependence on the temperature T , which is gov-
erned by (8). The boundary conditions at the free surface and at the substrate are assumed to
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have a functional dependence on some prescribed local temperatures Ta and Tb, respectively.
Defining

T ∗
b = Tb − T1

�T
, T ∗

a = Ta − T1

�T
(18)

and again suppressing the stars, we adopt as the dimensionless leading-order boundary condi-
tions in the limit ε → 0 that

at z = 0 : ∂T

∂z
= fb(T ;Tb),

at z = h : ∂T

∂z
= −fa(T ;Ta),

(19)

where fb(Tb;Tb) = fa(Ta;Ta) = 0, fb and fa being dimensionless heat transfer rates. We
subsequently approximate (19) by limiting (Dirichlet) conditions so we shall not discuss spe-
cific forms for fb and fa here; it is, however, noteworthy that the model derivation is applicable
to rather general conditions, such as (19), in which Tb and Ta (and indeed fb, fa and Q) can
depend on x, y and t ; here, however, for definiteness we shall subsequently take them to
be constant. The limiting case that we study is therefore equivalent to taking fi = γ (T − Ti)

(i = a, b) where the Biot number γ → ∞. Of course, if Ta �= Tb, this generates a temperature
discontinuity at the contact line, which can be smoothed by adapted Robin conditions instead
but, in any case, it has no significant influence on the details of the gross flow.

From (8) and (19) we have that

T = − 1
2Qz2 + Az + B, A = fb(B;Tb),

−Qh + A = fa(−Qh2/2 + Ah + B;Ta),

(20)

giving (on elimination of A and B) T as a function of z, h, Q, Tb and Ta . Performing the
integration with respect to z

′
in (13) then yields a (local) nonlinear diffusion equation for the

surface profile h(x, y, t).

2.3. TEMPERATURE-DEPENDENT VISCOSITY RELATIONSHIPS

Three relationships between dimensionless viscosity and temperature will be considered,
namely the linear, exponential and step function cases

µ(T ) = 1 − αT, (21)

µ(T ) = exp(−αT ), (22)

µ(T ) =
{

2a − 1 if T > Tm,

1 if T < Tm.
(23)

Here a > 1/2 is a dimensionless constant and T ≥ 0 is the dimensionless temperature. The
linear functional form provides a good approximation over limited temperature ranges (see
also the discussion in Section 5.2) and the exponential form (which is commonly adopted; see
for example, Wall and Wilson [22] in their model of a channel flow, Wu and Hwang [23] in
a model of film rupture, and Wilson and Duffy [20] in their study of rivulet flow) can model
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materials whose viscosity varies by orders of magnitude over the range of temperature of
interest; letting a → 1/2+ in the biviscosity case (23) leads to a large viscosity contrast at
T = Tm which can be used to mimic solidification with negligible latent heat, with Tm being
the dimensionless fusion temperature.

3. Numerical preliminaries

The model equations have been solved numerically using the NAG routine D03PGF, which
uses the method of lines, whereby the partial differential equation (17) is discretised in space
and solved as a system of coupled time-dependent ordinary differential equations subject to
specified initial and boundary conditions. For constant mass cases, the following initial profile
and boundary conditions are applied:

at t = 0 h = (1 − r2)+, (24)

as r → ∞ h → 0, (25)

(25) being equivalent to the conditions

at r = s(t) : h = D
∂h

∂r
= 0,

where r = s(t) is the, a priori unknown, moving boundary, with h = 0 for r ≥ s(t). In
practice, (25) is applied numerically at the ends of the numerical domain (the spatial ranges
shown in the results below correspond to this domain). For N = 2 we solve in r > 0, imposing
the symmetry condition

at r = 0 : ∂h

∂r
= 0 (26)

for the case of constant mass; for N = 1 in the constant mass case we additionally impose
(25) as x → −∞ in the illustrated free surface profiles, whereas the streamlines are only
shown in the domain x ≥ 0.

The boundary condition representing an inflow from a line or a point source is given next.
The injected fluid is assumed to be released into r > 0 at a dimensionless rate βqtβ−1, where
q and β are positive constants. The global continuity equation is thus, modulo any initial mass
present,

ωN

∫ s(t)

0
rN−1h(r, t)dr = qtβ, (27)

where ω1 = 1, ω2 = 2π ; equivalently,

at r = 0 : rN−1D
∂h

∂r
= − β

ωN

qtβ−1. (28)

The singularity at r = 0 is avoided in the point source case, N = 2, by applying (28) at
r = δ, where δ = 0.01 is typically adopted. To avoid problems initialising the numerical
calculations, it is assumed that there is a small amount of mass present at the start, typically

at t = 0 h = 10(0·01 − r2)+. (29)
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To aid interpretation of the dynamics of the spreading viscous liquid, the stream function
(N = 1) or Stokes stream function (N = 2) will be used, where

ur = 1

rN−1

∂ψ

∂z
, w = − 1

rN−1

∂ψ

∂r
, (30)

ur being the velocity in the radial direction, so that

ur = −
∫ z

0

(h − z
′
)

µ
dz

′ ∂h

∂r
, ψ = rN−1

∫ z

0

(h − z
′
)(z − z

′
)

µ
dz

′ ∂h

∂r
.

The stream functions are calculated numerically using the trapezium rule.
Note that the following results are illustrated in dimensionless units giving a distorted

aspect ratio, since the actual ratio is smaller by a factor of ε.

4. Hot- and cold-substrate models

4.1. TEMPERATURE FIELDS

We consider first the situation where the surface of the fluid and the substrate are at different
constant temperatures and there is no internal heating (Q = 0). This case, which has a temper-
ature discontinuity at the contact line, has been studied previously [19], but for completeness
we shall re-present known results alongside our new observations.

For the case Tb < Ta , we set T1 = Tb and �T = Ta − Tb, giving the boundary conditions
T = 0 on z = 0 and T = 1 on z = h as a limiting case of (19), so that

T = z/h. (31)

Secondly, we take T1 = Ta and �T = Tb − Ta in the case in which the fluid surface is cold
(T = 0) and the substrate hot (T = 1), giving

T = (h − z)/h. (32)

Equations (31) and (32) both have the same average temperature of 1/2 and give T = T (ζ )

in (15–16). The diffusivity in both cases thus takes the ‘isothermal’ form D̄(α)h3 for some
positive constant D̄, which is by no means obvious a priori.

4.2. LINEAR VISCOSITY LAW

Considering the linear viscosity law, (21), for the ‘cold substrate’ case we have

µ = 1 − αz/h, (33)

with α < 1 (so that µ > 0 holds everywhere). Substituting (33) in (13) gives D = D̄lch
3

where

D̄lc = α−3

(
3

2
α2 − α − (1 − α)2 log(1 − α)

)
. (34)

The subscript lc denotes the linear viscosity model with a cold substrate; a similar notation is
used for the different viscosity models and the hot substrate cases. We have

D̄lc = 1

3
+ 1

12
α + 1

30
α2 + 1

60
α3 + O(α4) as α → 0, (35)
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Figure 1. D̄ vs. α – hot- and cold-substrate cases.

showing how the isothermal limit α = 0 is approached.
The linear viscosity law in the ‘hot substrate’ model has

µ = 1 − α(h − z)/h, (36)

giving D = D̄lhh
3 with

D̄lh = α−3

(
−α2

2
− α − log(1 − α)

)
= 1

3
+ 1

4
α + O(α2) as α → 0. (37)

Increasing α decreases the viscosity for T > 0, so the fluid spreads more quickly. Fig-
ure 1(a) shows how, as α increases, D̄ increases for both the hot- and cold-substrate models.
The increase in D̄ is less pronounced for the latter, a cold substrate significantly hindering
spreading by maintaining a high viscosity close to the liquid/solid interface.

4.3. EXPONENTIAL VISCOSITY LAW

In the ‘cold substrate’ case

µ = e−αz/h, D̄ec = α−3
(
2eα − (α2 + 2α + 2)

)
, (38)

while in the ‘hot substrate’ one

µ = e−α(h−z)/h, D̄eh = α−3
(
eα(α2 − 2α + 2) − 2

)
. (39)

Note that D̄eh(α) = eαD̄ec(−α). Figure 1(b) shows the relationship between D̄ and α, and (as
for the linear viscosity relationship) the cold substrate case exhibits a much slower increase in
D̄ as α increases.

The results for the planar spreading of a liquid of constant mass, illustrated in Figure 2,
show the effects that the hot and cold substrates have on the flow dynamics. Although the
profile equation in the non-isothermal case reduces to that in the isothermal case, the stream-
lines differ significantly between the two cases, as illustrated in Figure 2 for the exponential
viscosity law. The assumed conditions are given by (24–26) and the governing equation (17)
is solved using the NAG routine D03PGF.

In order to compare corresponding streamlines within a given fluid domain, the times in
Figures 2(a) and 2(b) are rescaled by t = tiso/3D̄eh(α) and t = tiso/3D̄ec(α) respectively,
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Table .

Figure 2. Exponential viscosity law with α = 50: stream-
lines for the planar spreading of liquid of constant mass. a)
Hot-substrate case, t = 1·7×10−18; b) cold-substrate case,
t = 2·0 × 10−15; c) isothermal case, t = 500.

Figure 3. Biviscosity law with a = 0·505: planar
spreading of a constant mass of liquid – cold-
substrate case.

where tiso is the value of time in Figure 2(c); similarly the streamlines in Figures 2(a) and 2(b)
are chosen to correspond with those in Figure 2(c) by rescaling according to ψ = 3D̄eh(α)ψiso

and ψ = 3D̄ec(α)ψiso respectively, where ψiso denotes the streamline values in Figure 2(c). As
to be expected, most of the flow in Figures 2(a) and 2(b) occurs where the fluid is hottest and
the viscosity therefore lowest. We note that in the hot substrate case we have the representation

ψ = eα

α

(
z

h
+ 1

α

((
1 − z

h

)
e−αz/h − 1 − z

h

)
+ 2

α2

(
1 − e−αz/h

))
h3 ∂h

∂x
, (40)

corresponding for large α to each vertical cross section of fluid slipping almost rigidly over
the low viscosity boundary layer z = O(1/α), while for a cold substrate

ψ = 1

α

(
− z

h
+ 1

α

((
1 − z

h

)
eαz/h − 1 − z

h

)
− 2

α2

(
1 − eαz/h

))
h3 ∂h

∂x
, (41)
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almost all the flow occurring in the shear layer h − z = O(1/α) at the free surface when
α → ∞; this distinction between the two cases is evident in Figure 3.

4.4. BIVISCOSITY LAW

The last case we consider involves the biviscosity law (23) with 0 < Tm < 1. For the cold
substrate case we have

D =
∫ hTm

0

(z − h)2

1
dz +

∫ h

hTm

(z − h)2

2a − 1
dz, (42)

giving D = D̄bch
3 where

D̄bc = 2Tm(a − 1)(T 2
m − 3Tm + 3) + 1

3(2a − 1)
. (43)

Solving (17) with N = 1 numerically, subject to (24–25), gives height profiles and streamlines
for the planar spreading of a liquid of constant mass shown in Figure 3.

The free-surface profiles are given by those for the isothermal model on rescaling time
with 3D̄bc. The streamlines show the effect that the viscosity variation has on the spreading
dynamics: the liquid immediately above the cold substrate is more viscous than that adjacent
to the free surface and the flow is retarded compared with that over the hot substrate (cf.
Figure 4). The boundary across which the viscosity changes is given by z = hTm and is shown
in Figure 3(b); note the change in direction of the streamlines as the fluid flows down through
this boundary into the much more viscous region. Because a is close to 0·5, the region with
T < Tm acts as if nearly rigid, with almost all the flow occurring above it; in the central region
(where ∂h/∂t < 0) ‘melting’ is occurring (i.e. the region in which T < Tm is decreasing in
height), while ‘solidification’ of the spreading current is occurring where ∂h/∂t > 0.

Similarly, for a hot substrate

D =
∫ h(1−Tm)

0

(z − h)2

2a − 1
dz +

∫ h

h(1−Tm)

(z − h)2

1
dz, (44)

giving D = D̄bhh
3, where

D̄bh = 2T 3
m(a − 1) + 1

3(2a − 1)
. (45)

Solving Equation (17) subject to (24–26), with N = 2, numerically results in the height
profiles and streamlines for the axisymmetric spreading of a liquid of constant mass shown
in Figure 4. It is worth noting that the limit a → 1/2 provides a simple model of the surface
crusting of a material having negligible latent heat. Simulations with injection of fluid are
given in [3].
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Figure 4. Biviscosity law with a = 0·505: axisymmetric spreading of a constant mass of liquid – hot-substrate
case.

5. Internal-heat-generation model

5.1. FORMULATION

In situations of practical interest, heat may be generated internally as the material spreads.
Such heat generation may be caused by viscous dissipation, for example in turbulently con-
vecting lavas (for which the current model is not appropriate, however), by radioactive decay,
for example in nuclear reactor incidents, or by exothermic reactions within the fluid (it is worth
noting that experimentalists often simulate lava flows by erupting polyethylene glycol into
water plus salts; such processes can involve significant heat of dissolution). We now consider
a very simple model in order to investigate the influence of such a heat source on the spreading
characteristics of liquids with temperature-dependent viscosity. For definiteness, we assume
that the temperatures on the surface of the fluid and on the substrate are equal and that there
is a constant rate-of-heat generation throughout the fluid; the formulation may be generalised,
however.

The temperature equation is given by (8). We take T1 = Ta = Tb and �T = Qh2
0/k, giving

boundary conditions T = 0 on z = 0 and z = h and

T = 1

2
z(h − z). (46)

This simple form will now be substituted in turn in the three viscosity models introduced in
Section 2.3, with, from (13),

D =
∫ h

0

(h − z
′
)2

µ(z
′
(h − z

′
)/2)

dz
′
. (47)

5.2. LINEAR VISCOSITY LAW

Here

µ = 1 − 1

2
αz(h − z), (48)

and so

D = h3D̄(αh2) (49)
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where

D̄(σ ) =
∫ 1

0

(1 − ζ )2

1 − σζ(1 − ζ )/2
dζ. (50)

On evaluating the integral in (50),

D̄(σ ) = (4σ − 16) tan−1(σ/
√

8σ − σ 2) + 2
√

8σ − σ 2

σ
√

8σ − σ 2
, (51)

where 0 ≤ σ < 8; note that D ∼ 8π/α
√

8α − α2h2 as h → (
√

8/α)− and is therefore
singular in this limit. In the constant mass case, the non-dimensionalisation is chosen such
that hmax = 1 at t = 0; since hmax decreases with time the constraint σ < 8 ensures that µ is
positive. In the influx case, there is no solution to the axisymmetric problem if δ = 0 (since
the height would seek to exceed

√
8/α at r = 0, making the viscosity negative) and even for

δ > 0 (and in the planar case) failure of existence may occur at some finite time, with the
maximum height reaching

√
8/α; however, if the solution survives into the large-time regime

it will do so indefinitely (with hmax → (
√

8/α)− as t → ∞ if the injection rate is sufficiently
large). Such phenomena raise interesting issues in the theory of singular parabolic equations,
but we shall not pursue them further in the current context because the linear viscosity law
(21) is evidently inappropriate if T approaches 1/α. When α < 0

D̄(σ ) =
(4|σ | + 16)tanh−1

(
|σ |/√8|σ | + σ 2

)
− 2

√
8|σ | + σ 2

|σ |√8|σ | + σ 2
. (52)

In practice, the viscosity of a liquid is generally a decreasing function of temperature, in
which case α < 0 corresponds to an internal heat sink (Q < 0 corresponds to an endothermic
reaction, for example, and implies �T < 0 in the non-dimensionalisation). Expanding the
‘diffusivity’ as a Taylor series expansion about α = 0 gives

D = 1

3
h3 + 1

40
αh5 + 1

420
α2h7 + 1

4032
α3h9 + O(α4)

for both (51) and (52).
We first consider the problem of the planar spreading (N = 1) of a fluid, having linear

viscosity, from a line source, so the boundary condition is given by (28) and the diffusivity
by (51) for positive α and by (52) for negative α. Using the initial and boundary conditions
given in (29) and (25), computed height profiles and streamlines are as shown in Figure 5 for
q = 0·01, β = 1·5 and α = 7·9 (a value near the limit for which solutions are computable).

The height profiles for the non-isothermal model are flatter than the corresponding iso-
thermal ones in Figure 6. The streamlines are clearly affected by the temperature gradient:
in particular, the contact line region is fed by the more mobile fluid from the centre of the
fluid in the non-isothermal case. Note that the maximum height restricts itself in order to
keep the viscosity positive. Corresponding height profiles and streamlines for negative α are
shown in Figure 7. For α < 0, increases in viscosity due to heat sinks retard movement and the
continuous influx causes a build-up of fluid, resulting in almost triangular free-surface profiles
(see Figure 7(a)).

The next sets of results are for axisymmetric spreading (N = 2). Solving (17) with D

given by either (51) or (52), subject to the constant mass case conditions (24–26), gives the
results in Figure 8.
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Figure 5. Linear viscosity law with positive α: planar spreading from a line source.

Figure 6. Planar spreading with q = 0·01 and β = 1·5: isothermal results.

Figure 7. Linear viscosity law with negative α: planar spreading from a line source.
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Figure 8. Linear viscosity law: axisymmetric spreading of a constant mass of liquid.

Figure 9. Linear viscosity law with large negative α: axisymmetric spreading of a liquid from a source at r = δ.

For α = 7·9, the profile at t = 5 can be seen to have slightly greater lateral spread than
in the corresponding isothermal one, but at both t = 5 and 50, the profiles are really quite
similar. As α becomes more and more negative, the rate at which the fluid spreads is reduced
due to the increase in the viscosity. At t = 50, shown in Figure 8(b), all the profiles can be
seen to be approaching that of the isothermal case: from (46) the maximum fluid temperature
is h2/8 which rapidly drops with h making the flow approximately isothermal.

Figure 9 shows results for axisymmetric spreading from a point source; (17) with N = 2
is solved subject to (25), (28) and (29), with the diffusivity for negative α given by (52). As
for planar spreading from a line source, the free-surface profiles away from the origin develop
an approximately triangular shape. Again the form of profile is caused by the large viscosity,
which restricts the flow along the substrate and causes a build-up of fluid.

5.3. EXPONENTIAL VISCOSITY LAW

5.3.1. Asymptotic analysis
In this case we have

µ = exp

(
−1

2
αz(h − z)

)
, (53)
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and so

D = h3D̄(αh2), (54)

where

D̄(σ ) =
∫ 1

0
(1 − ζ )2eσζ(1−ζ )/2dζ. (55)

For α positive this gives

D̄(σ ) =
√

2π

σ 3

(
1 + σ

4

)
e

σ
8 erf

(√
σ

8

)
− 1

σ
, (56)

while for negative α

D̄(σ ) = 1

|σ | −
√

8

|σ |3
(

1 − |σ |
4

)
e− |σ |

8

∫ √
|σ |
8

0
eξ2

dξ. (57)

Expanding about σ = 0 we have

D̄(σ ) = 1

3
+ 1

40
σ + 1

840
σ 2 + 1

24192
σ 3 + O(σ 4), (58)

while

D̄(σ ) ∼
√

π

8σ
e

σ
8 as σ → ∞ (59)

(almost all the shear being localized to ζ − 1/2 = O(σ− 1
2 ) with the fluid in z < h/2 almost

stationary and that in h/2 < z < h almost undergoing plug flow). Finally,

D̄(σ ) ∼ 2

|σ | as σ → −∞; (60)

here the shear is strongest in ζ = O(1/|σ |), (60) being the contribution from this boundary
layer (the shear in the near-surface boundary layer ζ = 1 − O(1/|σ |) is O(|σ |−2) smaller,
while the contribution from the bulk is exponentially smaller).

There are three limits in which it is natural to apply asymptotic methods, namely t → ∞,
α → −∞ and α → +∞ and we now address each of these in turn.

The case t → ∞, α = O(1)

In the constant-mass and injection cases with 0 ≤ β < N/2 we obtain

h ∼ t
− (N−2β)

(3N+2) f (r/t
(3β+1)
(3N+2) ) as t → ∞, (61)

these being the familiar similarity solutions of the isothermal problem (hmax → 0 holds as
t → ∞ in (61), so D̄(σ ) ∼ 1/3, as in (58)); cf. [6], [7]. For β = N/2 we have

h ∼ f (r/t
1
2 )) as t → ∞, (62)
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this being a similarity reduction corresponding to the full diffusivity (54–55) (or the corres-
ponding expressions for the other viscosity laws); this is thus the case in which the fullest
physical balance arises for large t . Since (61) corresponds to

D ∼ 2h

|α| (63)

we have for α < 0, β > N/2 that

h ∼ t
(2β−N)
(N+2) f (r/t

(β+1)
(N+2) ) as t → ∞, (64)

Equations (61) and (64) being the corresponding similarity solutions to the porous-medium
equation with exponents of three and one, respectively (again, see [6]). Finally, for α > 0,
β > N/2, it follows from the strongly nonlinear (cf. [24] and references therein) form (59),
i.e.,

D ∼
√

π

8α
h2eαh2/8, (65)

with h � 1 that

h ∼ hm(t)

away from the contact line (corresponding to a plateau in the droplet profile), where hm(=
hmax) is the unknown ‘mesa’ height. A balance in (17) (in which r scales with the contact-line
location s(t) and h − hm with 1/hm) requires that

dhm

dt
= O

(
hmeαh2

m/8/s2
)

, (66)

from which it follows that

hm ∼ (8log(s2/t)/α)
1
2 as t → ∞.

Moreover, conservation of mass (27) yields

ωN

N
sNhm ∼ qtβ , (67)

so for β > N/2 we have

s ∼
((

Nα

8(2β − N)

) 1
2 Nq

ωN

) 1
N

t
β
N

log
1

2N t
,

hm ∼
(

8(2β − N)

Nα

) 1
2

log
1
2 t + O

(
loglogt

log
1
2 t

)
as t → ∞.

(68)

Note that the O
(

loglogt/log
1
2 t

)
in (68) must be included to satisfy the balance implied by

(66).

The case α → −∞
Here (63) pertains for t = O(1) away from the contact line (i.e., for h = O(1)), so (64)
holds on the initial timescale for any β ≥ 0; however, for β < N/2 the maximum droplet
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thickness decreases with time and on a long timescale such that hmax = O(|α|− 1
2 ) (i.e., for

t = O(|α|(N+2)/2(N−2β))) the full ‘diffusivity’ (57) comes into play.
For N = 1, β = 2 the similarity reduction (64) reads

h ∼ tf (x/t) as t → ∞
and takes the explicit (travelling wave) form

f (η) = |α|
2

η0(η0 − η)+ (69)

in η > 0, with (27) requiring η0 = (4q/|α|) 1
3 . The simulations shown in Figure 14 below have

β relatively close to two, and (69) thus provides an explanation of their remarkably triangular
profiles.

The case α → +∞
The analysis is similar to that discussed for α > 0 above; now

h = hm + O(1/αhm) (70)

applies after an initial transient with

dhm

dt
= O(hmeαh2

m/8/α
3
2 s2)

and with (67). Hence

hm ∼ (8log(s2/t)/α)
1
2 ,

implying in particular that O(1) changes in hm correspond to variations in t over an exponen-
tially wide range of scales. Thus

s ∼
(

Nq(Nα)
1
2 tβ

ωN (8((2β−N)logt+logα))
1
2

) 1
N

,

hm ∼
(

8((2β−N)logt+logα)

Nα

) 1
2
.

(71)

If β > N/2 then (68) is approached as t → ∞, as expected; if β < N/2 the maximum droplet
height again decreases until the full form (56), rather than its asymptotic representation (65),
is needed, the behaviour ultimately tending to the isothermal limit.

5.3.2. Numerical solutions
The first set of results are for planar spreading of a liquid of constant mass. Solving (17)
using the NAG routine D03PGF, with D given by (54), subject to (24–26) (the error function
is evaluated using NAG routine S15AEF) gives the results shown in Figure 10. The height
profiles are shown at fixed times t = 5 and t = 7500 for α = 0 (the isothermal case), 100,
200 and 340. As α increases, the profile becomes more plateau-like at t = 5. For the larger
time, Figure 10(b), the thermal effects have reduced significantly and the profiles are much
less distinct. This convergence of the profiles again results from the fact that the temperature
reduces to zero as the maximum thickness decreases and that, asymptotically, the profiles lose
their memory of the initial shape, attaining the familiar Barenblatt [6] solution.
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Figure 10. Exponential viscosity law with positive α: planar spreading of a liquid of constant mass.

Figure 11. Exponential viscosity law with negative α: axisymmetric spreading of a liquid of constant mass.

Next we consider the axisymmetric spreading of a liquid of constant mass when α is
negative. The results, Figure 11, are shown for times t = 750 and t = 7500 for α =
0, −150, −350, −450 and −650. As is to be expected, the height profiles at t = 750
show that the lateral spread is inhibited as α is decreased, that is as the liquid becomes more
viscous. Figure 11(b) shows the height profiles tending asymptotically towards the isothermal
result for larger times. The streamlines are not particularly noteworthy, but examples are given
in [3].

Figure 12 shows the height profiles and streamlines for spreading from a line source,
described by the boundary condition (28), with the diffusivity for positive α defined by (54)
and the initial condition given by (29).

For large α we again observe the development of profiles having a steep flow front followed
by a plateau; because the fluid film continues to increase in thickness at this rate of injection,
there is no tendency for the profile to tend to the isothermal form. In contrast to the previous
patterns for source flows (Figures 6(b), 7(b) and 9(b)), the streamlines correspond to a mainly
plug flow except near the spreading front and just above the substrate.

In laboratory experiments, fluid is sometimes injected from a point source at a constant
rate to simulate lava dome growth, for example see [17]. Thus in the next set of numerical
results for axisymmetric spreading we take the boundary condition (28) with β = 1 and the
diffusivity given by (54) for positive α. The initial and remaining boundary conditions are
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Figure 12. Exponential viscosity law with α = 340: planar spreading of liquid from a line source.

Figure 13. Exponential viscosity law with α = 340: axisymmetric spreading of a liquid from a constant point
source.

(29) and (25). As in the planar case with a line source, on increasing α, the flow develops
a steep front followed by a plateau, Figure 13. While this is qualitatively consistent with
experiments performed by Stasiuk et al. [17], it should be emphasized that here it is the
internal heating that causes the steep flow front, whereas the experimental study does not
involve this effect. While caution needs to be exercised when interpreting these results, the
lubrication approximation does remain valid provided that the gradients do not become too
steep. Note that as α increases, the rate at which the fluid spreads also increases, due to the
decrease in viscosity. This is exemplified by the behaviour of (65) as α → +∞, the diffusivity
thus being exponentially large where h � 1/

√
α.

The corresponding height profiles for a line source with negative α develop a roughly
triangular profile, as in the linear viscosity model, see Figure 14. The results for a point source,
Figure 15, also exhibit a rather similar profile, caused by the large initial viscosity. This can
be seen in the streamline pattern where the upward flow feeds the ‘triangular’ profile.

From the numerical results for α = −150, illustrated in Figure 14, it is found (from the
slopes of suitable log-log plots) that the fluid height at x = 0 varies as hmax ∝ t0·66 for
β = 1·5, while the front location varies as s ∝ t0·89; this is in good agreement with the
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Figure 14. Exponential viscosity law with α = −150: planar spreading of a liquid from a line source.

Figure 15. Exponential viscosity law with α = −150: axisymmetric spreading of a liquid from a point source.

expected asymptotic results from (64) of hmax ∝ t
2
3 and s ∝ t

5
6 . Such agreement is also

exhibited by the axisymmetric results, Figure 15(a), where s varies as t0·61 for α = −150 and
β = 1·4, while (64) gives s ∝ t

3
5 .

The stream function for the exponential viscosity law can be written using (30) and (53) as

ψ = rN−1
∫ z

0
exp(αz

′
(h − z

′
)/2)(h − z

′
)(z − z

′
)dz

′ ∂h

∂r
. (72)

Writing z
′ = Z

′
/|α| and z = Z/|α| we have in the boundary layer Z = O(1) that

ψ ∼ 2rN−1

|α|2
(

2 exp(− 1
2Zh) + Zh − 2

h

)
∂h

∂r
as α → −∞. (73)

Integration of (72) by parts, with z = O(1) as α → −∞, gives in the bulk,

ψ ∼ 2rN−1z

|α|
∂h

∂r
, (74)

which matches with the inner (73). Thus, as α → −∞, the horizontal velocity is almost
independent of z away from the boundary layer at the substrate; there is also a second (weaker)



Degenerate-diffusion models 63

Figure 16. Exponential viscosity law with α = −150: planar spreading of a liquid from a line source.

boundary layer with z = h − O(1/|α|). Numerical results for a line source are shown in
Figure 16 (these results corresponding to the streamlines in Figure 14). The boundary-layer
region z = O(1/|α|) can be seen in Figure 16(b) where the liquid is flowing almost horizont-
ally; above this region, plug flow is observed. Figure 16(b) features another region near the
flow front, where the behaviour of the velocity changes sharply. This flow structure has the
scalings r = s(t) + |α|− 1

2 R, h = |α|− 1
2 H , z = |α|− 1

2 Y and z
′ = |α|− 1

2 Y
′
, with R < 0, so (72)

gives

ψ ∼ |α|− 3
2 (−s)N−1

∫ Y

0
eY

′
(H−Y

′
)/2(H − Y

′
)(Y − Y

′
)dY

′ ∂H

∂R
, (75)

with the boundary layers merging into the outer to occupy the full vertical cross-section of the
droplet.

Similar results hold for the linear viscosity model where, as α → −∞, (52) simplifies to

D ∼ 2log

( |α|h
2

)
h

|α| ∼ 2log(|α|) h

|α| . (76)

As shown in the above analysis for planar spreading, in the influx case we have (64) for
sufficiently large times (using the final expression in (76); the appearance of the term involving
log h in the second expression leads to additional logarithmic terms in the intermediate asymp-
totics for 1/|α|  h  1). This agrees with the results illustrated in Figure 7, where h ∝ t0·6
and s ∝ t0·9 for β = 1·5.

5.4. BIVISCOSITY LAW

Finally, we consider the viscosity law given by a step function, (23). In the present situation,
where there is constant internal heating and cooling at the boundaries, the core is expected to
be at a higher temperature and therefore possibly of lower viscosity. The surface on which the
fluid attains the temperature Tm is given by

Tm = 1

2
z(h − z), (77)
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Figure 17. Schematic for biviscosity model.

that is

z = 1

2

(
h ± (h2 − 8Tm)

1
2

)
. (78)

Provided h >
√

8Tm, this gives two real roots z = h+ and h− as indicated in Figure 17, which
illustrates the free surface of the fluid and the T = Tm temperature contour. Thus the viscosity
in the central region, enclosed by h = h+ and h−, is 2a − 1 while it is unity outside; the outer
region is more viscous than the inner region when a > 1/2; note that x = ±w correspond to
points where h = √

8Tm. The diffusion integral is therefore

D =
∫ h−

0
(z − h)2dz +

∫ h+

h−

(z − h)2

2a − 1
dz +

∫ h

h+
(z − h)2dz, (79)

where

h± = 1

2

(
h ± (h2 − 8Tm)

1
2

)
, (80)

so that

D =




2(1 − a)(h2 − 2Tm)(h2 − 8Tm)
1
2 + h3(2a − 1)

3(2a − 1)
, if h >

√
8Tm

h3

3
, otherwise.

(81)

Equation (17) has been solved numerically for planar spreading (N = 1), with the diffus-
ivity given by (81). Applying initial and boundary conditions given by (24–26), we obtain the
results in Figures 18–19.

The height profiles in Figure 18 again show the fluid developing a steep profile at the front
with a plateau behind. Increasing Tm retards the spreading process, as shown in Figure 18(b).
The streamlines at time t = 150, Figure 19(b), highlight the discontinuity in the viscosity
relationship.

6. Conclusions

This paper has been concerned with a specific parameter regime in which the evolution equa-
tion for the height of a non-isothermal fluid drop takes the degenerate parabolic form

∂h

∂t
= ∇.(h3D̄(h)∇h). (82)
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Figure 18. Biviscosity law with a = 0·505: planar spreading of a liquid of constant mass – internal heat-generation
model.

Figure 19. Biviscosity law with a = 0·505: planar spreading of a liquid of constant mass – internal heat-generation
model.

Within the broader framework oulined in [2], this class of model has a number of special
features (such as an infinite number of (moment) conservation laws; [25]) and in particular
cannot exhibit the fingering instability which may occur in other parameter regimes ([1], [11]).

A particular noteworthy feature of the foregoing analysis is the discussion of the (phys-
ically relevant) limit α → +∞ in Section 5.3.1. For this simple heat source model, the
maximum temperature in any cross-section is an increasing function of the fluid thickness
there. This feature is shared by a wide range of other parameter regimes (including many in
which heat transfer is governed by a significantly more complicated model) and the plateau
phenomena described above (whereby any parts of the droplet which are noticeably thicker
than the rest spread much faster and so decrease in height, the profile ‘equilibrating’ to a
top-hat form) is thus a much more general characteristic of the behaviour of non-isothermal
gravity currents with large α; the cases discussed in Section 3 are non-generic in the sense that
the maximum temperature in a cross-section is independent of h, so a mesa does not result.
Steep-sided profiles also arise in the experimental data of Stasiuk et al. [17] and the numerical
results of Bercovici [16] who used a radially-varying viscosity model; the steep front results
from the decrease in temperature at the edge of the droplet, leading to an increase in viscosity
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there which restricts the movement of the fluid. Similar behaviour is observed in lava flow [26]
and may serve to emphasize the importance of cooling for the dynamics of spreading melts.

The results in this study reveal the fascinating behaviour exhibited by spreading fluids of
variable viscosity. For example, fluids with viscosities varying by orders of magnitude (the
exponential case), spreading axisymmetically from a point source can have vertical cross-
sections that are, at one extreme, roughly triangular (for a heat sink) and, at another extreme,
almost rectangular (for a heat source).

We conclude by noting that similar approaches carry over to other physical balances (see,
for example, [1] for an indication of parameter regimes in which the coupling between the
heat and flow problems is more complicated); we illustrate one such here by considering the
case in which viscous dissipation is responsible for the heat source, so that (8) becomes

∂2T

∂z2
= −λµ(T )

((
∂u

∂z

)2

+
(

∂v

∂z

)2
)

,

where λ =PrE with Pr and E denoting the usual Prandtl and Eckert numbers. Thus

µ(T )
∂2T

∂z2
= −λ|∇p|2(h − z)2

so for Dirichlet boundary data, with p = h − z,

T = T (ζ, λh4|∇h|2).
Since (13) implies

D = 1

λ|∇h|2
(

∂T

∂z

∣∣∣∣
z=0

− ∂T

∂z

∣∣∣∣
z=h

)

we therefore have

D = h3D̄(λh4|∇h|2)
for some function D̄, leading to a doubly-nonlinear class of degenerate diffusion equations,

∂h

∂t
= ∇.(h3D̄(λh4|∇h|2)∇h); (83)

in the capillary-driven (rather than gravity-driven) case p = −�h we instead have

∂h

∂t
= −∇.(h3D̄(λh4|∇�h|2)∇�h). (84)

Other thermal boundary conditions can of course be analysed; for example, if (cf. (19))

∂T

∂z
= λFb(T ;Tb) on z = 0,

∂T

∂z
= −λFa(T ;Ta) on z = h

then as λ → 0 we obtain to leading order that T is independent of z and

µ(T )(Fa(T ;Ta) + Fb(T ;Tb)) = 1

3
h3|∇p|2
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with (82–83) being replaced respectively by evolution equations of the form

∂h

∂t
= ∇.(h3D̄(h3|∇h|2)∇h), (85)

∂h

∂t
= −∇.(h3D̄(h3|∇�h|2)∇�h). (86)

One might expect that, in the case of (84), (86), viscous dissipation may serve to regularise
the well-known contact-line stress singularity, but to achieve this care is needed in selecting
the viscosity law; specifically, 1/µ should typically grow sublinearly as T → ∞ and we here
consider the case

µ ∼ µ∞T −S as T → ∞ (87)

with 0 < S < 1, Fa + Fb = γ T , say, where γ is some constant. In this case, in both (84), for
T = 0 on ζ = 0, 1, and (86) we have

D̄(σ ) ∝ σ
S

1−S as σ → ∞. (88)

The analysis of King [27, Section 4.3] thus pertains. In the notation there, (84), (88) corres-
ponds to the borderline case n = 1 + 2m, so, as with the isothermal case, the model does
not in fact allow the contact line to advance. However, (86), (88) (in which the temperature
effect is stronger) has 1 + m/2 < n < 1 + 2m, so (88) serves as an effective regularisation
in allowing contact-line motion. We emphasise that (87) is adopted here for the purposes of
such a regularisation, rather than on physical grounds; if 1/µ grows linearly or faster then the
equation that determines D̄(σ ) typically has no solution if σ is too large (corresponding to
thermal runaway) and two solutions for smaller σ (one being stable and one unstable); while
such phenomena are of significant interest in their own right, it would be inappropriate to
discuss them further here. Similar issues arise for gravity currents too. Since in the isothermal
gravity-current case we have h ∝ (distance to contact line)

1
3 as the contact line is approached,

even if viscous dissipation is negligible in the bulk of the droplet it will be significant near
the contact line for (85) (since h3|∇h|2 ∝ (distance)− 1

3 ) but will remain small for (83)
(h4|∇h|2 ∝ (distance)0).
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